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ABSTRACT
Wavelength division multiplexing (WDM) optical networks
are becoming more attractive due to their unprecedented
high bandwidth provisions and reliability over data trans-
mission among nodes. Therefore, it is not uncommon for en-
terprises to build a datacenter with over thousands of nodes
using WDM optical networks. To reach the high speed over
optical links, all-optical, i.e., single hop, networks are desir-
able as there is no overhead on conversions to and from the
electronic form compared to multi-hop networks. However,
given the number of nodes required, few previous works sug-
gested a topology, e.g., torus, to support all-to-all routing
with the minimum number of wavelengths over all-optical
networks. In this paper, we address this challenge from a
different angle. Specifically, it is possible to build differ-
ent torus topologies by altering the number of nodes in ev-
ery dimension, but we first show that the minimum number
of wavelengths to satisfy the all-to-all routing over torus is
N/3, and prove that the necessary and sufficient condition
to achieve it is the sides of all dimensions are 3; thus the re-
sultant topology is an n-dimensional hypersquare torus net-
work; then we develop a wavelength assignment to achieve
the all-to-all routing over the corresponding n-dimensional
hypersquare torus; finally, we consider the fail-over problem
in our proposed topology and derive the minimum number
of backup wavelengths to mitigate the affected lightpaths
thus maintain the gossiping.
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1. INTRODUCTION
In wavelength division multiplexing (WDM) networks, dis-

tinct laser beams can propagate on a fiber link simulta-
neously. Therefore, WDM networks can potentially sup-
port the gigantic bandwidth for many future throughput-
intensive applications. The key technique to transfer bulk
data over a wavelength routed all-optical network is to estab-
lish a lightpath [1] between a source-destination pair, which
might come across multiple consecutive links. In the absence
of wavelength converters, whether a lightpath can be estab-
lished is subject to the wavelength continuity constraint - a
lightpath must occupy the same wavelength on all the links
it traverses between a source-destination pair.

It is not uncommon for enterprises to build a datacenter
with over thousands of nodes using WDM optical networks.
To maintain the high speed over bulk data transmission,
all-optical networks, aka sing hop networks, is most desir-
able as there is no overhead on conversions to and from the
electronic form compared to multi-hop networks [2], which
could deteriorate bandwidth provisions. All-to-all routing,
also known as gossiping, is a fundamental problem in such
all-optical networks and has been studied by numerous pre-
vious works. However, they mainly focus on the problem
that finding out the minimum number of wavelengths given
a topology, e.g., a fixed side and dimension torus network,
thus few ones can suggest a topology, e.g., torus, to support
all-to-all routing with the minimum number of wavelengths
over all-optical networks given the number of nodes required
by enterprises.

In this paper, we address this challenge from a different
angle. Specifically, it is possible to build different torus
topologies by altering the number of nodes in every dimen-
sion, thus we first show that the minimum number of wave-
lengths to satisfy the all-to-all routing over torus is N/3,
where N is the number of nodes, and prove that the neces-
sary and sufficient condition to achieve it is that the sides of
all dimensions of networks are 3; thus the resultant topol-
ogy is an n-dimensional hypersquare torus network; then
we develop a wavelength assignment to achieve the all-to-all
routing over the corresponding n-dimensional hypersquare
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torus; finally, we address the fail-over problem in our pro-
posed topology and derive the minimum number of backup
wavelengths to mitigate the affected lightpaths thus main-
tain the gossiping.

To the best of our knowledge, no previous work achieves
the minimum number of wavelengths over n-dimensional hy-
persquare torus topologies where dimension is not less than
3 and the side is odd. In summary, our key contributions
include:

1. We develop a novel routing and wavelength assignment
algorithm using greedy algorithm (GAR) to achieve
all-to-all routing in ring networks with odd nodes and
even nodes using the minimum number of wavelengths.
Although this problem was investigated in [3] and [4],
they failed to propose a wavelength assignment algo-
rithm to achieve the optimality.

2. We show that, for any torus topology with N nodes in
the network, the minimum number of wavelengths to
satisfy all-to-all routing is N/3, which can be achieved
in the n-dimensional hypersquare torus with side 3.

3. Inspired by (1) we also develop a routing and wave-
length assignment algorithm to address the all-to-all
routing problem in the n-dimensional hypersquare torus
with side 3 with N/3 wavelengths, which achieves the
theoretical minimum number of wavelengths.

4. We consider the links fail-over problem in the n-dimensional
hypersquare torus with side 3 and obtain the lower
bound of number of backup wavelengths to maintain
the all-to-all routing in the corresponding networks.

The remainder of the paper is organized as follows. Sec-
tion 2 introduces our GAR algorithm to realize all-to-all
routing in a ring network with odd or even nodes. Section 3
shows that the n-dimensional hypersquare torus with side 3
can achieve the minimum number of wavelengths among all
torus topologies, and a routing and wavelength assignment
algorithm is proposed to achieve that minimum. The fail-
over problem in n-dimensional hypersquare tori with side 3
is addressed in Section 4. We review related works in Section
5 and conclude our paper in Section 6.

2. ALL-TO-ALL ROUTING OVER
ALL-OPTICAL NETWORKS

The all-to-all routing problem over all-optical networks
was well studied by numerous previous works but still opens
in many ways. Bermond et al. [3] showed that the mini-
mum number of wavelengths needed over a ring network of
N nodes, where N = k for ring networks, is k2/4 − 1 if k
is odd, and k2/4 if k is even. They also showed that 2n−1

wavelengths are required to achieve all-to-all routing over
n-dimensional hypercubes. Schroder et al. [17] showed that
the minimum number of wavelengths for all-to-all routing
over all-optical 2-dimensional torus with side k is (k3−k)/8.
Beauquier [5] derived the minimum number of wavelengths
required for the n-dimensional hypersquare with side k is
kn+1/8 if k is even, but did not solve the case for k is odd.
To the best of our knowledge, no achievable lower-bound on
the number of wavelengths is given when the dimension of
torus is no less 3, i.e., n ≥ 3, and the side k is odd. Ad-
ditionally, previous works failed to propose a routing and

Table 1: Parameters and notations
Notation Meaning

n The dimension of the torus
k The side of each dimension in hypersquare tori
N The number of nodes in the topology
m bk/2c
⊕ The addition modulus k plus one
	 The subtraction modulus k plus one
Gnk The n-dimensional hypersquare torus

with side k
li The link between node i and node i+ 1

in ring networks
Dn
k The average shortest path length in Gnk

Ank The average number of wavelengths in links
in Gnk

Minnk The lower bound of wavelengths in Gnk
di The side of the ith dimension of

n-dimensional tori
E[di] The average shortest path length in di
E[d] The average shortest path length in

n-dimensional tori
UN The minimum number of wavelengths in

tori with N nodes
[a, b] {a, a+ 1, · · · , b}
R(i, j) The lightpath from node i to node j
wij The wavelength assigned to R(i, j)
lij The unidirectional link from node i to node j
li The unidirectional link from node i to node

i⊕ 1 in ring networks

wavelength assignment (RWA) algorithm to achieve those
lower-bounds, hence we develop a novel RWA algorithm us-
ing greedy algorithm (GAR) to achieve the all-to-all routing
over ring networks with both odd and even nodes, which can
be applied readily in practical.

2.1 Preliminaries
Fig. 1 depicts a undirected ring with N nodes and N

links, where N = k. Let li denote the link connecting node
i and node i⊕1, where ⊕ denotes the addition modulus k
then plus one [3]. Every link is bidirectional and every node
is required to establish a lightpath with any other node of
the ring. As ring is symmetric, node i, where i ≤ N , is the
center node, i.e., locates at the center of the ring, when node
i is connecting to all other nodes through k − 1 lightpaths.
Without loss of generality, we assign wavelengths for the (k-
1) lightpaths of node i sequentially from i = 1. Let R(i, j)
denote the lightpath from node i to node j. R(i, j) is in the
progressive direction if (j 	 i) < m, where m = bk/2c, and
regressive direction if (j 	 i) > m as shown in Fig. 2, where
	 denotes the operation of subtraction modulus k plus one.
The shortest path routing algorithm is adopted in this model
[3, 5, 6], thus the set of paths is unique if k is odd, and there
are two shortest paths from node i to node i ⊕ k/2 if k is
even. Let Si,j denote the set of wavelengths assigned to lj
when node i is the center node. Note that all the parameters
and notations used are shown in Table 1.

To introduce GAR we first define some notations.

Definition 1. [i, i⊕m] = {i, i⊕ 1, · · · , i⊕m}

Definition 2. We say i ≤ a ≤ i⊕m if the range of a is



Figure 1: Ring network with N nodes

[i, i⊕m]

When k is odd, we have the following lemmas.

Lemma 1. li⊕m won’t be used if node i is the center node,
i.e.,

|Si,i⊕m| = 0 (1)

Proof. When node i is the center node, the m light-
paths in the progressive direction will traverse the m links
li, li⊕1, · · · , li⊕(m−1) and the m regressive lightpaths will
travel the m links li	1, li	2, · · · , li	m with the shortest path
routing algorithm. Hence, li⊕m is not used.

Lemma 2. ∀ a, b, satisfy i ≤ a < b ≤ i⊕m, we have:

Si,b ⊂ Si,a, |Si,a| = m+ i− a (2)

∀ a, b, satisfy i⊕ (m+ 1) ≤ a < b < i⊕m, we have:

Si,a ⊂ Si,b, |Si,a| = a− (i+m) (3)

Proof. Assume that i ≤ a < b ≤ i ⊕ m. ∀w ∈ Si,b,
suppose that w is the wavelength assigned to R(i, c), where
b ≤ c ≤ i ⊕ m. R(i, c) will also traverse la because of the
shortest path routing algorithm, i.e., w ∈ Si,a. Hence, Si,b ⊂
Si,a. Furthermore, R(i, e), where a + 1 ≤ e ≤ i ⊕ m, will
travel on la. Therefore, |Si,a| = m+i−a. In the same token,
we obtain the results for i⊕ (m+ 1) ≤ a < b < i⊕ k.

Let Gnk denote the n-dimensional hypersquare torus with
side k thus G1

k is a ring network with k nodes. We first intro-
duce the theoretical lower-bound of the wavelengths needed
for all-to-all routing in all-optical Gkn.

2.2 Lower-bound Wavelengths
M. A. Marsan et al. [7] derived the average shortest path

length in Gnk , denoted by Dn
k , as follows:

Dn
k =

{
n(kn+1−kn−1)

4(kn−1)
k is odd

nkn+1

4(kn−1)
k is even

(4)

Since all links along a lightpath share a same wavelength,
the average number of a wavelength assigned to a lightpath
is also Dn

k .
As the number of nodes in Gnk is kn, thus N = kn, there

are N(N − 1) ordered node pairs, i.e., N(N − 1) lightpaths,
and nN links in Gnk . Let Ank denote the average number of
wavelengths over one link in Gkn, we have:

Ank =
N(N − 1)Dn

k

nN
(5)

Substitute (4) into (5), we have:

Ank =

{
N
4

(k − 1
k

) k is odd
Nk
4

k is even
(6)

Figure 2: Ring network with 7 nodes

Let Minnk denote the lower-bound of wavelengths needed for
all-to-all routing in Gkn, thus we have

Minnk = d1
2
Anke (7)

which is proved in [5]. Substitute (6) into (7) we have:

Minnk =

{
N
8

(k − 1
k

) k is odd

dNk
8
e k is even

(8)

Next we propose a RWA algorithm that can achieve (8) in
ring networks by considering two cases: (1) k is odd and (2)
k is even, in the following section.

2.3 RWA Algorithm in Ring Networks
Case 1: k is odd:
We propose a greedy algorithm to achieve (8). N = k =

2m+1 if k is odd in a ring network. As shown in Fig. 2, node
i is randomly chosen to be the center node, and we assign
wavelengths to R(i, j) and R(i, 2i	 j). As ring networks are
symmetric at every node, the wavelength assigned to R(i, j)
can be the same as R(i, 2i 	 j). Thus GAR only needs to
achieve (8) in ether R(i, j) or R(i, 2i	j). We first introduce
some notations:

Definition 3. [a, b] = {a, a + 1, · · · , b}, where a and b
are positive integers and 1 ≤ a < b.

The crux of GAR is as follows: given the set of avail-
able wavelengths for a link, we assign a wavelength with the
smallest index to a lightpath without contending with the
wavelengths of the links along that lightpath. Let N denote
the number of nodes in a ring network, [1,Min1

N ] denote the
set of available wavelengths, which has the minimum size as
shown in (8). Let wij denote the wavelength assigned to
R(i, j). GAR is shown in the pseudo-code in Algorithm 1,
which can be summarized into the following four ways:

(i) the available wavelengths in the N links are initialized
with [1,Min1

N ]. availWaves[µ], where 1 ≤ µ ≤ N , denotes
the available wavelengths in lµ. (Line 2)

(ii) node 1 is first centered and it needs to build R(1, j) ,
where 1 < j ≤ m+1, thus links l1, l2..., lm−1 will be used. As
shown in Lemma 2, l1 needs to carry m wavelengths, and lγ ,
where 1 < γ ≤ m, carries the subset of wavelengths of the l1.
With greedy algorithm, the first m− (γ	 1) wavelengths in
S1,1 are assigned to lγ to build R(1, j), where 2 < j ≤ m+1.

(iii) theN nodes are in turn to be the center nodes starting
from 1. Let i denote the index of the node that becomes the
center node currently. Similar to (i), li needs to carry m
wavelengths as well and lµ, where i ≤ µ < m ⊕ i, carries
m − (µ 	 i) wavelengths, which is the subset of li. Si,i is
assigned the first m available wavelengths in li. If i < µ ≤
N , the first m − (µ 	 i) wavelengths in Si,µ	1 are assigned
to Si,µ. If 1 ≤ µ < i ⊕ m, the first wavelength in Si,µ	1

was assigned to lµ before, thus the first m − (µ 	 i) + 1
available wavelengths except for the first one are assigned to
lµ. (Lines 3-17)



Algorithm 1 GAR in ring with odd nodes

1: m = bN/2c
2: availWaves = InitWavelengths(N)
3: for each i in [1, N ] do
4: Si,i = availWaves[i][1 : m]
5: availWaves[i] = availWaves[i]− Si,i
6: for each offset in [1,m− 1] do
7: j = (i+ offset) mod N + 1
8: num = m− offset
9: if i+ offset ≤ N then

10: Si,j = Si,j	1[1 : num]
11: else
12: Si,j = Si,j	1[2 : num+ 1]
13: end if
14: availWaves[j] = availWaves[j]− Si,j
15: Sort availWaves[j] ascendingly
16: end for
17: end for
18: for each i in [1, N ] do
19: for each d in [i+ 1, i⊕m] do
20: wi,d = Si,d	1 − Si,d
21: end for
22: end for

(iv) the set of wavelengths in Si,µ, where 1 ≤ i, µ ≤ N , is
converted to wi,j , where i < j ≤ i⊕m. (Lines 18-22)

For example, GAR for G1
7 is shown in Table 2. The set of

available wavelengths to support all-to-all routing in G1
7 is

[1, 6] as Min1
7 = 6. When node 1 is centered, by (ii), GAR

assigns {1, 2, 3} to S1,1, {1, 2} to S1,2 and {1} to S1,3. When
node 2 is centered, by (iii), S2,2 = {3, 4, 5}, S2,3 = {3, 4}
and S2,4 = {3}. When node 6 is centered, S6,7 = {2, 4}.
S6,1 = {4} as wavelength 2 was assigned to S1,1.

We will prove the correctness of GAR. Let Wi,µ denote
the set of wavelengths assigned to lµ when the first i nodes
are the centers and Si,µ[e] the eth element in Si,µ.

Theorem 1. ∀1 ≤ µ ≤ N , GAR guarantees that
(i) ∀1 ≤ a < b ≤ N , we have

Sa,µ ∩ Sb,µ = ∅ (9)

(ii)
⋃N
i=1 Si,µ = [1,Min1

N ]

Before proving Theorem 1, we first introduce some lem-
mas.

Lemma 3. ∀1 ≤ µ ≤ N , GAR ensures that

N∑
i=1

|Si,µ| = Min1
N (10)

Proof. When node µ is the center, we have |Sµ,µ| = m.
∀µ ≤ i ≤ µ ⊕m, |Si,µ| = m − (i 	 µ). If µ ⊕m < i < µ,
|Si,µ| = 0. Hence, we have

N∑
i=1

|Si,µ| = N2/8− 1 = Min1
N (11)

Furthermore, we have

|Wi,i| = Min1
N (12)

where m ≤ i ≤ N .

Table 2: An example of GAR for G1
7

µ
i

1 2 3 4 5 6 7

1 1,2,3 4 5,6
2 1,2 3,4,5 6
3 1 3,4 2,5,6
4 3 2,5 1,4,6
5 2 1,4 3,5,6
6 1 3,5 2,4,6
7 3 2,4 1,5,6

Lemma 4. When the first m nodes are the centers, if
∀1 ≤ µ ≤ N and ∀1 ≤ a < b ≤ m, we have

Sa,µ ∩ Sb,µ = ∅ (13)

Proof. If 1 ≤ j ≤ m, with the greedy algorithm we have

Si,i[j] =

{
Sj,j [j +m− i] 1 ≤ j < i ≤ m
(m− i−2

2
)(i− 1) + j − i+ 1 i ≤ j ≤ m

(14)
and

Wj,j = [1, (m− (i− 1)/2)i] (15)

If j = m, Wm,m = [1,Min1
N ], thus there is no wavelength

contention in the firstm links. According to Lemma 2, ∀m ≤
a < b ≤ 2m− 1, we have

Wm,b ⊂Wm,a ⊆Wm,m (16)

which indicates that no wavelength conflicts in lµ, where
m + 1 ≤ µ ≤ 2m − 1. Therefore, no wavelength contention
occurs in the N links, i.e.,

Sa,µ ∩ Sb,µ = ∅, (17)

when the first m nodes are the center nodes, where 1 ≤ µ ≤
N and 1 ≤ a < b ≤ m.

Lemma 5. If m < i ≤ N , we have

Wi,i = [1,Min1
N ] (18)

Proof. With the greedy algorithm, when node i is the
center, Si,i[e] cannot appear in Si,i+m−e+1 where 1 ≤ i, e ≤
m, thus Si,i[e] can be an element of St,t, where t = i−m+e−
1. If node j, where j < t, is centered, GAR guarantees that
no wavelength contention occurring in lµ, where j ≤ µ ≤ N ,
we have

St,t = {w|w = St−m+x,t−m+x[x+ 1], 0 ≤ x ≤ m− 1} (19)

Since GAR ensures no wavelength contention occurs when
the first m nodes are the centers as shown in Lemma 4, we
can assignm elements from the corresponding St−m+x,t−m+x

respectively to St,t by iteration. According to Lemma 3, if
m ≤ i ≤ N , we have |Wi,i| = Min1

N , hence

Wi,i = [1,Min1
N ] (20)

where m < i ≤ N .

With Lemmas 4, 5, we prove Theorem 1 as follows:

Proof. According to Lemma 4 and 5, if node i is cen-
tered, GAR ensures that no wavelength contention occurs
in lµ, where i ≤ µ ≤ N . As shown in Lemma 4 we have

Wi,a ⊂Wi,b (21)



where i ≤ b < a ≤ N . As the m wavelengths in Si,i are not
included in Wi−1,i, the first m− (a− i) + 1 wavelengths in
Si,a do not conflict with the wavelengths in Wi−1,a+1. Thus
we have

Si,a[e] = Si,i[e] (22)

where 1 ≤ e ≤ m− (a− i) + 1.
If 1 ≤ µ < i, the first element in Si,µ is in Wi−1,µ⊕1. If

m+ 3 ≤ i ≤ N and 1 ≤ µ ≤ i	 (m− 1), we have

Si,N [µ] = Si,i[µ] = Si−m+µ−1,i−m+µ−1[µ] (23)

By iteration we obtain that

Si,N [µ] ∈Wi−1,µ (24)

and when 1 ≤ e < µ, there is

Si,N [e] /∈Wi−1,µ (25)

If node i, where m + 1 ≤ i ≤ N , is centered and 0 ≤ µ ≤
i−m− 2 (l0 is lN ), we have

Si,N [e] /∈Wi−1,µ (26)

where µ+1 ≤ e ≤ i−m−µ−1. Except for the first element,
all other elements in Si,µ are not in Wi−1,µ+1, thus we have

Si,µ+1 = {w|w = Si,µ[x], 2 ≤ x ≤ i−m− µ− 1} (27)

Therefore, we have

WN,µ = [1,Min1
N ] (28)

where 1 ≤ µ < m, and

Sa,µ ∩ Sb,µ = ∅ (29)

where 1 ≤ µ ≤ N and 1 ≤ a < b ≤ N . We combine (18),(28)
and obtain

WN,µ = [1,Min1
N ] (30)

where 1 ≤ µ ≤ N .

Therefore, GAR can optimally realize all-to-all routing in
an all-optical ring networks with N nodes.

Case 2: k is even
In a ring network with k nodes, where k is odd, each

progressive lightpath has its counterpart in the regressive
direction, but when k is even, i.e., k = 2m, R(i, i ⊕ m)
has no counterpart in another direction. We summarize our
GAR algorithm in this case into 2 ways: first, we satisfy
all the lightpaths with the minimal number of wavelengths
except those special ones that have no counterparts, and
second assign wavelengths for them.

(i) the algorithm is the same as that in Case 1. Similarly,
when node i is the center node, we assign the same wave-
length for R(i, j) and R(i, 2i 	 j), where i < j < i ⊕ m,
and only consider the k(k − 2)/2 lightpaths in the progres-
sive direction. The available set of wavelengths in either
direction is {1, 2, · · · ,Min1

k}, where Min1
k = dk2/8e. With

greedy algorithm, k2/8−k/4 wavelengths are enough to sat-
isfy the lightpaths in the progressive direction. The proof is
the same as that in Case 1.

(ii) We only need to assign wavelengths for the k light-
paths of which path lengths are m. There are dk/4e light-
paths left after (i). If the directions of R(i, i + m) and
R(i+m, i), where 1 ≤ i ≤ m, are the same, e.g., progressive
or regressive, they form a closed circle. Specifically, the di-
rection is progressive if i is odd, and regressive if i is even,

Figure 3: Lower bound of wavelengths when N is
fixed

thus the number of wavelengths needed in the progressive
direction is dk/4e and in the regressive direction is bk/4c.

In summary, the number of wavelengths needed to achieve
(8) in Case 2 is Min1

k = dk2/8e.

3. THE N-DIMENSIONAL HYPERSQUARE
TORUS WITH SIDE 3

It is not uncommon fo enterprises to build a cloud/datacenter
with fixed number of nodes. A ring network with our GAR
algorithm can be used to satisfy the enterprises’ require-
ments. However, when the number of nodes in the sys-
tem is fixed, the minimum number of wavelengths needed to
support all-to-all routing decreases with the increase in the
number of the dimensions of torus topologies. Fig. 3 shows
the minimum number of the wavelengths needed to support
all-to-all routing over topologies with different dimensions
when N = 64 and N = 81 respectively. The number of
wavelengths significantly decreases from ring networks to n-
dimensional hypersquare torus networks. Therefore, in this
section we will find a torus topology with fixed number of
nodes that requires the minimum number of wavelengths to
support all-to-all routing.

3.1 Lower-bound Wavelengths in Torus
Networks with Fixed Nodes

According to (8), Minn2 = N/4 if the side of a hypersquare
torus is 2. However, this n-dimensional hypersquare torus
with side 2 is an n-dimensional hypercube, thus the number
of links in the hypercube is nN/2 hence Minn2 increases from
N/4 to N/2, which is consistent with the results in [3].

Let di denote the side of the ith dimension of n-dimension
torus networks, where di ≥ 2. If di = 2, one bidirectional
link is sufficient to connect any two nodes in rings along
the ith dimension instead of two bidirectional links [8], thus
the number of links in rings will be halved, resulting in the
double of the number of wavelengths needed over these links.
Therefore, di = 2 is excluded thus we assume di ≥ 3.

Theorem 2. The lower-bound wavelengths to realize all-
to-all routing in tori with N nodes is N/3.

Proof. The number of nodes in n-dimensional tori is

N =

n∏
i=1

di (31)

where di ≥ 3. Without loss of generality, we suppose that
di is odd when 1 ≤ i ≤ s, and even for s < i ≤ n, where
1 ≤ s ≤ n. Let E[di] denote the mean distance along the
ith dimension and E[d] the average shortest path length in



Figure 4: The ring network with 3 nodes

n-dimensional tori. Marsan et al. [7] presented that

E[d] =
N

N − 1

n∑
i=1

E[di] (32)

and in the ith dimension, there is

E[di] =

{
di/4 di is even

di/4− 1/(4di) di is odd
(33)

The number of unidirectional links in the whole network is
2nN . Let UN denote the lower-bound wavelengths for all-
to-all communication in all-optical torus networks with N
nodes, thus we have

UN =
N(N − 1)E[d]

2nN

=
N

8n
(

n∑
i=1

di −
s∑
i=1

1

di
)

≥ N

8n

n∑
i=1

(di −
1

di
)

≥ N

3

(34)

UN achieves its minimum N/3 when all di = 3.

Next we develop a RWA algorithm to satisfy the all-to-all
routing in Gn3 using the minimum number of wavelengths,
i.e., N/3.

3.2 Optimal RWA Algorithm for Gn3

Let (a1, a2, · · · , an) denote the location of node p in Gn3 ,
where 1 ≤ ai ≤ 3, and p[e], where 1 ≤ e ≤ n, denote the
coordinate of node p in the eth dimension; li,j denote the
unidirectional link from node i to node j. We can regard Gn3
as 3 Gn−1

3 : g1(n− 1), g2(n− 1) and g3(n− 1). For any node
p in gh(n− 1), where 1 ≤ h ≤ 3, p[n] = h.

Definition 4. ph is the counterpart of node p in gh(n−1)
if ph[e] = p[e], where 1 ≤ e ≤ n− 1, and ph[n] = h 6= p[n].

Let P (n, h, p) denote the set of lightpaths in Gn3 of which
sources are the 3n−1 nodes in gh(n−1) and destinations are
node p that is not in gh(n − 1); D(n, p) denote the set of
3n−1 − 1 lightpaths in Gn3 whose destinations are node p.

The routing algorithm adopted in Gn3 is to route in the
order of dimensions. Before introducing the algorithm to
realizing all-to-all routing in Gn3 with 3n−1 wavelengths, we
first introduce some lemmas.

Lemma 6. Given a node p in Gn3 , D(n, p) uses one of the
N/3 wavelengths twice and the left N/3−1 wavelengths three
times respectively.

Proof. We proved Lemma 6 by induction.

Lemma 7. Assume node q is in gh(n−1), where 1 ≤ h ≤
3. If and only if R(q, p) ∈ P (n, h, p), R(q, p) will traverse
lph,p.

Proof. If R(q, p) ∈ P (n, h, p), with the routing algo-
rithm, R(q, p) will traverse ph that is the counterpart of node
p in gh(n−1). Then it will traverse lph,p. If R(q, p) traverses
lph,p, with the routing algorithm, node p is the destination
thus node p is not in gh(n− 1) and R(q, p) ∈ P (2, h, p).

Lemma 8. Given two distinct nodes p and q in gh(n−1),
where 1 ≤ h ≤ 3. R(q, p), R(q, ph⊕1) and R(q, ph	1) will
share all the links traversed by R(q, p), which are in gh(n−1).

Proof. According to the routing algorithm, the first (n−
1) steps for R(q, ph⊕1) and R(q, ph	1) is to route to p thus
they will traverse the links travelled by R(q, p). The last
step for the two lightpaths is the same as that of R(p, ph⊕1)
and R(p, ph	1), respectively, which are disjoint [9].

Lemma 9. Assume 3n−2 wavelengths are sufficient to re-
alize all-to-all routing in Gn−1

3 . The number of wavelengths
in any unidirectional link in the first n − 1 dimensions to
support all-to-all routing in Gn3 is 3n−1.

Proof. We randomly pick two distinct nodes q and p
in Gn−1

3 and wq,p = λ ∈ [1, 3n−2]. Gn−1
3 is equivalent to

gh(n − 1) in Gn3 thus R(q, p) has two counterparts in Gn3 ,
i.e., R(q, ph⊕1) and R(q, ph	1). Wavelength λ is mapped to
[3λ− 2, 3λ] and we assign the three wavelengths to R(q, p),
R(q, ph⊕1) and R(q, ph	1). According to Lemma 8, wave-
length λ will be mapped to [3λ − 2, 3λ] in all the links tra-
versed by R(q, p). If we consider all the R(q, p) in g1(n− 1),
g2(n− 1) and g3(n− 1) as well as their counterparts, all the
lightpaths in Gn3 are considered. Therefore, the set of wave-
lengths in all the unidirectional links in g1(n− 1), g2(n− 1)
and g3(n− 1) are mapped from [1, 3n−2] to [1, 3n−1].

The algorithm to realize all-to-all routing in Gn3 can be
summarized into the following three ways:

(i) all-to-all routing is realized in G1
3 with one wavelength,

as shown in Fig. 4.
(ii) all-to-all routing is realized in G2

3 with 3 wavelengths.
G2

3 is shown in Fig. 5 and the links connecting the top nodes
and the bottom nodes in vertical rings are not depicted. The
routing algorithm in G2

3 is X-Y routing. The wavelength
assigned to R(q, p) is

wq,p = (q[1] + q[2] + [p[1] + p[2]) mod 3 + 1 (35)

In addition, Lemma 6 is established in G2
3.

(iii) we assume that all-to-all routing is realized in Gn−1
3

with 3n−2 wavelengths and Lemma 6 is established. We
randomly pick two distinct nodes q and p in Gn−1

3 and sup-
pose wq,p = λ ∈ [1, 3n−2]. We regard Gn−1

3 as gh(n − 1) in
Gn3 , then node p will have two counterparts ph⊕1 and ph	1.
Wavelength λ is mapped to [3λ − 2, 3λ]. If wavelength λ is
assigned to three lightpaths in D(n− 1, p) (Lemma 6) and
the other two lightpaths are R(q′, p), R(q′′, p), we assign the
three wavelengths to Rq,ph⊕1 , Rq′,ph⊕1

and Rq′′,ph⊕1
and do

not violate Lemma 9. Similarly, if wavelength λ is assigned
to three lightpaths in D(n− 1, p) and the other lightpath is
R(q′, p), we assign wavelengths 3λ−2 and 3λ−1 to Rq,ph⊕1 ,
Rq′,ph⊕1

, respectively.
We will prove the correctness of this algorithm.

Proof. According to Lemma 8, lp,ph⊕1 carries 3n−1 wave-
lengths. By (iii), wq,ph⊕1 , wq′,ph⊕1

and wq′′,ph⊕1
are in [3λ−



Figure 5: The ring network with 3 nodes

2, 3λ]. We assign the three wavelengths to the three light-
paths thus the set of wavelengths in lp,ph⊕1 is [3λ−2, 3λ]. If

we consider all the wavelength λ in [1, 3n−2], the set of wave-
lengths in lp,ph⊕1 will be [1, 3n−1]. With Lemma 9, the set

of wavelengths in any link in Gn3 is [1, 3n−1]. Furthermore,
if we fix the destination node ph⊕1, the 3n−1 sources are in
g1(n − 1), g2(n − 2) and g3(n − 1) thus each wavelength in
[1, N/3] will appear 3 times except that one wavelength will
appear twice because it is unnecessary to assign wavelength
to R(ph⊕1, ph⊕1). Therefore, Lemma 6 is still established in
Gn3 .

With the similar approach, we can obtain the RWA al-
gorithm for hypercube with the theoretical minimal wave-
lengths.

4. LINK FAILURES
All theoretical bounds on the number of wavelengths for

all-to-all routing problems are based on the assumption that
no link/node failure occurs. In the above discussion, the
routing and wavelength assigned to any lightpath is pre-
set, thus all the wavelength assignments can be applied be-
fore building the all-optical datacenter/cloud network. How-
ever, it is inevitable for a datacenter/cloud to address the
link/node failures as they occur frequently after the net-
work is built [10, 11, 12]. The link/node failures indicate
that some lightpaths cannot be used, thus an intuitive way
to address this problem is to increase the number of wave-
lengths in the network, thus failed lightpaths can be routed
through them immediately. We also assume the number of
nodes in networks, i.e., N , is fixed. As shown in Section 3,
an n-dimensional hypersquare torus with side 3 is the opti-
mal topology in terms of the number of wavelengths needed
to support all-to-all routing. Therefore, in this section we
will investigate the problem that how many additional wave-
lengths are needed to support all-to-all routing if one or mul-
tiple links failures occur over an n-dimensional hypersquare
torus with side 3.

4.1 One Link Failure
We first address a special case that how many additional

wavelengths are required to maintain the all-to-all routing
if only one link fails. Let lij denote the failed unidirectional
link in the tth dimension inGn3 , (a1, · · · , at−1, s1, at+1, · · · , an)
and (a1, · · · , at−1, s2, at+1, · · · , an) denote the coordinates
of node i and node j, where s1 6= s2.

The number of wavelengths in lij is N/3, thus there are

N/3 lightpaths passing through this link and we have the
following lemma:

Lemma 10. Any lightpath originated from node p (x1, · · · ,
xt, s1, at+2, · · · , an) to node q (a1, · · · , at, s2, yt+2, · · · , yn)
will traverse lij.

Proof. The routing algorithm shown in Section 3 first
routes in the 1st dimension, then 2nd dimension and so on.
From node p to node q, the lightpath first arrives at node i,
then passes through lij .

There are 3t choices for node p and 3n−t−1 choices for node
q, thus 3t × 3n−t−1 = 3n−1 lightpaths will traverse lij . As
lij fails, 3n−1 connecting lightpath should be reassigned by
additional wavelengths. There are two methods to solve this
problem: (1) to reclaim all the wavelengths assigned to the
all-to-all routing and reassign the path and wavelength for
them. However, as one link fails, the symmetry property of a
torus is not valid, thus the wavelength assignment algorithm
shown in Section 3 cannot be used. We can apply integer
linear programming (ILP) or linear programming (LP) [13,
14, 15, 16] to tackle this RWA problem; and (2) to keep the
unaffected lightpaths and only reassign wavelengths to the
N/3 lightpaths passing through the failure link.

In general, the number of wavelengths solved by ILP and
LP is closed to the optimality. However, there are two lim-
itations related to this approach: (1) When a link fails, it
is desirable to recover the all-to-all routing as soon as pos-
sible, but the convergence period of ILP and LP can be
significantly large, especially when N is large; and (2) re-
configuring the optical network is arduous as it requires the
pause of network operations. Therefore, in order to reduce
the recovery time and reconfiguration cost, we choose the
second method, which causes some additional wavelengths.

The fail-over problem is simplified in the second approach
compared to ILP and LP. We define a link is the starting
(ending) link of node v if this link starts from (ends at) node
v. Any node in n-dimensional tori has 2n unidirectional
starting links and 2n unidirectional ending links.

If the failed link is from the ending links of the destination
node q, there are 3t lightpaths destined to this node among
the affected 3n−1 lightpaths because of the link failure. Let
α(q) and β(q) denote the set of the 2t (or 2t−1) links in the
first t dimensions and the set of the rest of 2(n− t) links in
the rest of (n − t) dimensions respectively, when node q is
the destination. For any two distinct nodes q and p, α(q),
β(q) , α(p) and β(p) are disjoint with each other.

Let A and B denote the union of α and β of all 3n−t

destination nodes respectively. Each lightpath of the 3n−1

affected lightpaths has to traverse one of the links in A to
reach its destination. Let CA and CB denote the number
of lightpaths passing through A and B respectively, thus we
have

CA = 3n−1

CB ≥ 0
(36)

Let SA(t) denote the size of A, we have

SA(t) = 2t× 3n−t − 1 (37)

Let Mean denote the average number of lightpaths pass-
ing through each unidirectional link in A, thus we have

Mean = CA/SA (38)



Let M(t) denote the lower bound of the backup number
of wavelengths to maintain the all-to-all routing if the failed
link is in the tth dimension and M = max(M(t)), thus we
have

M(t) = dMeane = d 3t−1

2t− 1/3n−t
e (39)

where t is in [1, n] thus M(t) achieves its maximum when
t = n, i.e.,

M = M(n) = d 3n−1

2n− 1
e (40)

Let BW be the number of backup wavelengths for one
link failure. Then

BW ≥ d 3n−1

2n− 1
e (41)

As shown in (40), the maximum backup number of wave-
lengths is needed when lij is in nth dimension and node j is
the destination of the 3n−1 affected lightpaths.

Since 3n−1 lightpaths will pass along lij if it is not failed,
these lightpaths have to pass along the rest of (2n − 1)
ending links to reach their destination node j. We evenly
distribute the 3n−1 lightpaths among these adjacent unidi-
rectional links, thus the number of backup wavelengths is
d3n−1/(2n− 1)e, which is consistent with (40).

The same results can be obtained for the case that the
failed link is from the starting links of the source node p,
which the maximum number of backup wavelengths is needed
when lij is in the first dimension and node i is the source of
the 3n−1 affected lightpaths.

4.2 Multiple Links Failures
As shown in Section 4.1, backup wavelengths can guaran-

tee all-to-all routing in Gn3 if they could satisfy the worst
case, i.e., the failed link is in the 1st or the nthdimension.
Similarly, for the case of h links fails simultaneously, where
h > 1, the worst case is that all the failed links are from the
same set of starting or ending links of a node.

We assume that the h failed links are from the set of start-
ing links of node i. If the failed link denoted by lij is in the
tth dimension, thus 3n−t lightpaths, denoted by T (t), start-
ing from i are affected hence need to reassigned wavelengths.
In the n-dimensional torus, a node has two starting links in
one dimension, thus these 3n−1 lightpaths from node i tra-
verse these 2n starting unidirectional links in all dimensions,
thus we have

3n − 1 = 2(

n∑
t=1

T (t)) (42)

Let the dimensions of the h failed links are d1, d2, · · · , dh,
respectively; f(h) denote the number of the affected light-
paths, we have

f(h) =

h∑
j=1

T (dj) (43)

As T (t) is a monotonically decreasing function, f(h) achieves
its maximum when all the dis achieve their minimum, thus
we have

f(h) =

{
3n − 3n−h/2 h is even

3n + 2× 3n−(h+1)/2 h is odd
(44)

The backup wavelengths should support the max(f(h))
lightpaths to travel on the rest of unaffected 2n − h start-
ing links of node i, thus we derive the minimum number of
backup wavelengths for h links failures for the following two
cases: let

Case 1: if h is even and h ≤ 2n:

BW ≥ 3n − 3n−h/2

2n− h (45)

Case 2: if h is odd and ≤ 2n:

BW ≥ 3n + 2× 3n−(h+1)/2

2n− h (46)

For h ≥ 2n, one node is isolated from the network as all its
2n starting or ending links are unavailable, thus the all-to-
all routing is impossible to realize, which is not considered
in this work.

In practical, network operator can take advantage of a cen-
tralized controller to detect the failure, compute the routing
and backup wavelength assignment algorithm as well as run-
ning our GAR algorithm to realize all-to-all routing when
building the all-optical network.

5. RELATED WORK
Many previous works investigated the routing problem in

all-optical bidirectional ring and torus networks [3, 4, 5, 17].
Ellinas et al. [18] showed that the number of wavelengths
needed to support all-to-all routing over an unidirectional
ring network is N(N − 1)/2. Additionally, many previous
works studied some specific graphs such as hypercubes [5]
and trees of rings [19]. Pascu et al. [20] leveraged the tap-
and-continue capability of the nodes in the optical network
to address the all-to-all routing problem in arbitrary topolo-
gies. Narayanan et al. [21] developed an approximation
algorithm to solve the all-to-all routing problem in chordal
rings of degree 4. The number of wavelength needed is at
most 1.006 times the theoretical minimal number of wave-
lengths. Beauquier al et. [19] discussed the all-to-all prob-
lem in the symmetric directed trees of rings. Gargano et al.
[4] developed another method to prove that the minimum
number of wavelengths is achievable in ring network. Multi-
hop model [2] in lines, rings, 2D square tori, 3D square tori
and complete binary trees has been well studied in [22, 23,
24, 25], but we only consider single-hop model in this pa-
per, thus multi-hop model can be a research direction in our
future works.

6. CONCLUSIONS
In this paper, we revisit the all-to-all routing problem

in all-optical networks, which is well-studied by previous
works, but they failed to propose a concrete routing and
wavelength assignment algorithm to achieve the theoretical
lower bound of the number of wavelengths. Therefore, we
first develop a novel RWA algorithm, i.e., GAR, to solve
the all-to-all routing in bidirectional ring network with odd
nodes or even nodes, which achieves the lower bound of
number of wavelengths needed to support the all-to-all rout-
ing. Second, we showed that the number of wavelengths to
realize all-to-all routing in any torus topology is not less
than N/3. Among those topologies, an n-dimensional hy-
persquare torus with side 3 on each dimension is shown to



achieve the value, N/3, and a GAR-like routing and wave-
length assignment algorithm is proposed to solve all-to-all
routing over that topology. Finally, we address one/multiple
links failure problem over that topology, i.e., we derive the
lower bound of the number of backup wavelengths to main-
tain the all-to-all communication if one/multiple links fail
over an n-dimensional hypersquare torus with side 3.
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