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Abstract— Today’s datacenter is shared among various 

applications with different QoS requirements, which poses a 

great challenge to deliver low delay transport with high 

throughput. Most of works address this challenge by reducing 

the in-network delay, but assumes a negligible local delay. 

However, we show that this assumption does not hold for a 

multi-tenant datacenter that a physical machine is shared by 

multiple tenants with virtual machines running different 

applications. As measured, we found that VMs in a PM 

competing for bandwidth resources introduce delays as high as 

13 ms, resulted from the packet queueing at QDisc layer of that 

PM, because current VMs’ rate control still operates in a 

distributed manner without exploiting knowledge of the QoS 

requirements of applications running in VMs. This work 

addresses this problem by proposing a centralized rate 

adaptation (CERA) that operates in the host PM, dynamically 

schedules the flows from all VMs in a centralized manner. We 

implemented a CERA prototype and evaluated CERA through 

testbed experiments. Our results show that CERA reduces the 

local delay significantly thus reduces the average request 

latency of delay sensitive applications, e.g., memcached, by a 

factor of 6.3, without sacrificing the throughput performance 

of throughput intensive applications, e.g., iperf. 

I. INTRODUCTION  

Datacenters are shared by various applications with 
diverse Quality-of-Service (QoS) requirements: delay 
sensitive applications, e.g., memcached [1], require low 
delay to minimize their flow completion time (FCT); 
throughput intensive applications, e.g., data-parallel 
computation like MapReduce [2], require high throughput 
for large flows; and others require both high throughput and 
low delay, e.g., online data-intensive applications [10]. This 
dynamic environment in datacenter poses a great challenge 
to deliver low delay transport with high throughput. 

Some existing approaches [3-5] address this challenge by 
reducing the in-network queueing length, while assuming 
negligible local delay at the edge, i.e., physical machines 
(PM). However, this assumption is not true for multi-tenant 
datacenter that every PM sets up a virtual network attached 
by multiple Virtual Machines (VM). Those VMs could run 
multiple applications thus could deliver over thousands of 
flows with diverse QoS requirements, which could result in a 
large backlog at the host PM thus increase the end-to-end 
delay. To address this problem one intuitive idea is to apply 
the methods proposed to reduce the in-network delay to 
reduce the local delay. We employed some conventional 
approaches including DCTCP [4], CoDel [6] and Multiple 
Level Feedback Queue (MLFQ) in a PM and evaluated them 

with testbed experiments. We showed that, compared to the 
vanilla PM, they could reduce the local queueing delay by at 
most a factor of 4.2 when the number of flows in a VM is 
small, i.e., 32, but also result in a local queueing delay of at 
least 4 ms when the number of flows is over 50. We point 
out, the previous approaches are operated in a distributed 
manner which controls the transmission rate on a per-flow 
basis without exploiting the knowledge of the other flows 
from all VMs sharing the same PM, e.g., flows’ transmission 
rate, the number of flows, etc. 

To this end, we replace the distributed rate control used 
in the virtual network of a PM with a centralized rate 
adaptation algorithm (CERA) that continuously estimates the 
queueing length at QDisc. If the estimated queue length 
exceeds a preconfigured target length CERA first reduces the 
aggregated sending window of every VM weighted 
proportional to the number of bytes it transmitted by every 
VM over the past fixed interval – which implicitly estimates 
the current transmission rate of every VM. Second, every 
VM equally distributes its aggregated window allocated in 
the first step among all flows from that VM, both of which 
enable CERA to achieve high throughput and low delay. 

We implemented a CERA prototype that contains two 

components: (1) a Linux kernel module at the QDisc of host 

PMs to monitor the queue length and a user-space program 

that determines the aggregated sending window of each VM 

according to the estimated queueing length; and (2) a Linux 

kernel module implemented at every VM kernel to allocate 

the sending window of every flow from that VM. 

We evaluated CERA on a testbed with a virtualized 

network attached by VMs created with KVM [8]. In our 

experiments, we find that CERA reduces the average 

queueing delay at QDisc by at least a factor of 0.53 when the 

number of flows in a VM is small, e.g., 32, and 1.6 when the 

number of flows in a VM is large, e.g., 50, thus improves the 

average latency. 

The remainder of the paper is organized as follows. 

Section II introduces the motivations of this work. Section III 

presents the CERA’s algorithms. Section IV evaluates 

CERA through testbed experiments. Section V reviews the 

related works and Section VII concludes this work. 

II. MOTIVATIONS 

Our studies were motivated by the unexpectedly large 
delay observed in the large scale virtual network of a host 
PM, thus we report the results of local delay measured from 
a virtual network built in a PM of our testbed, and find out 
the primary source of that delay. 



 
Fig. 1. Experiments setup for validating local delays. 

 

In this section, we validate the problem that a large delay 

could be observed in virtual networks of host PMs. We  

conduct experiments over a testbed depicted in Fig. 1, 

consisting 3 PMs that are connected by a switch, where PM 

A sets up a virtual network attached by multiple VMs that 

send packets to PM B via a bridge connecting the physical 

NIC with 1Gbps link capacity. Specifically, we create four 

VMs in PM A’s virtual network, one of them runs a 

memcached [1] using memaslap load generator [9] and 

measures its request latencies.  

As shown in Fig. 2, the average latency of memcached 

requests are below 1ms that is mainly contributed by the 

transmission delay. However, the request latencies of 

memcached increase up to over 13ms when it concurrently 

runs with 8 iperf flows running in the other 3 VMs 

respectively. We measure that the average delay at QDisc 

queue is around 12ms. 

III. CERA ALGORIHTMS 

The idea of using the centralized approach in a datacenter 

is not new. Ghobadi et al. [11] first proposed a central 

controller, OpenTCP, to adjust TCP parameters and variants, 

e.g., initial congestion window size and retransmission time 

out (RTO) according to the measured network state and 

dynamics during that period. Perry et al. [3] proposed 

Fastpass that is a central arbiter instructing every host PM to 

control its every packet transmission timing explicitly over a 

set of timeslots to achieve the goals of both network-wide 

high bandwidth efficiency and near-zero queueing delay. 

However, the delay of the control loop, i.e., between the 

controller/arbiter and PMs, impacts the accuracy of the rate 

controls and the control packets also compete with normal 

traffics for bandwidth. 

We seek a feasible solution that exploits the knowledge 

of flows from all VMs sharing the same PM and 

dynamically controls their transmission rates in a centralized 

manner. Similar to Fastpass [3] and OpenTCP [11], CERA 

algorithms are divided into two components: (1) the central 

controller running in the host PM. If the estimated queue 

length exceeds a preconfigured target length, it determines 

the aggregated sending window of each VM weighted 

proportional to the number of bytes it transmitted by that 

VM over the past fixed interval – which implicitly estimates 

the current transmission rate of every VM; and (2) CERA 

client running in every VM distributes the window 

reduction among all flows from that VM according to their 

current sending windows. 

 
Fig. 2. The cumulative distribution of memcached requests latencies. 

A. Central Controller 

The central controller continuously monitors the queue 

length at QDisc of the host PM by implementing a loadable 

kernel module. Specifically, we divide time into small fixed 

epoch of ∆ milliseconds in duration. The central controller 

monitors the queue length at the end of each epoch. In the 

meantime, the central controller intercepts every outgoing 

packet just before they are passed to the NIC thus 

determines the number of packets transmitted by every VM 

enqueued at QDisc during the past M∆ milliseconds – where 

M controls the duration of the estimation interval, by 

looking into the source IP address of packets’ IP headers.  

Let qi denote the queue length at the end of the ith epoch; 

nk,i denote the number of packets transmitted by the kth VM 

during the past M∆ milliseconds at the end of the ith epoch, 

thus nk, i implicitly estimates the sending rate of the kth VM 

at the end of ith epoch, i.e., nk,i/M∆. If qi>Tu, where Tu 

denotes the upper bound of the target queue length, the 

central controller reduces the aggregated sending window of 

every VM weighted proportional to the sending rate of that 

VM so that the queue length will oscillate between Tu and Tl, 

where Tl denotes the lower bound of the target queue length 

and Tl<T. Let d denote the RTT and Wi the current total 

aggregated sending window allocated for all VMs during 

the ith epoch. To reduce the queue length to Tl we have 

 / +i lW dC S T   (1) 

where S denotes the packet size and C denotes the capacity 

of the NIC. 

Let
ik denote the set of VMs that transmits nonzero 

packets during the past M∆ at the end of the ith epoch; μk 

denote the weight for VM k; wk,i denote the aggregated 

sending window allocated for VM k at the ith
 epoch, thus we 

have 
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  (2) 

If μk=1 for all k, (2) becomes the ECN-based rate control 

such as DCTCP. After deriving wk, the central controller 

sends wk to VM k, for
ik k  , using TCP connection that is 

established when VM k is created. 



 
Fig. 3. Network testbed setup. 

 

B. CERA Client 

Once a VM, e.g., VM k, is created, CERA client 

establishes a TCP connection with the central controller thus 

can receive the aggregated window from the controller, i.e., 

wk,i. In the meantime, VM k keeps track of all the active 

TCP flows. Specifically, when a TCP flow is established, it 

is added to a circular list, and is deleted from the list if that 

TCP flow is closed. Because the receiving window (AWnd) 

cannot become the throughput bottleneck by default until 

loss events are detected, we only modify the CWnd that 

mainly affects the sending window.  

Let cwm,k,i denote the CWnd of the mth TCP flow of the 

kth VM at the end of the ith epoch after the window 

distributions; M denote the set of the active TCP flow, the 

algorithm to distribute the aggregated sending window 

among all the active TCP flows is summarized into the 

following two ways: 

(i) CERA client equally allocates CWnds among TCP 

flows in M , thus we have, 

 
, , , /m k i k icw w M 

 
  (3) 

But (3) will result in the remaining windows as cwm,k,i takes 

the floor of , /k iw M , thus the remaining windows is 

 , , ,k i m k iw cw M   (4) 

(ii) In order to efficiently make full use of the remaining 

windows CERA client allocates (4) one by one to those TCP 

flows in a round-robin manner. It is unfair to allocate (4) 

always from the head of the circular list, because the flows 

in the tail of the list do not have equal chance to obtain the 

remaining windows, hence we record the position of the last 

updated TCP flow in the circular list during the last epoch, 

and allocate (4) from the next one of that recorded position 

until (4) becomes zero. 

 After step (i) and step (ii), every TCP’s CWnd will be 

governed by its TCP variant employed, e.g., TCP CUBIC, 

until the next end of epoch. 

IV. PERFORAMCNE EVALUATIONS 

A. Network Testbed Setup 

We evaluate CERA over a testbed consisting of three 

Intel Xeon-based physical machines. As shown in Fig. 3, 

every PM adopts Linux kernel 3.10.25. PM A setups 4 VMs 

using KVM. Every VM also adopts Linux Kernel 3.10.25, 

which can access the networks to which a physical NIC is 

connected via a bridge. The queue length at QDisc of the 

bridge is set to 1000 packets by default. Three PMs are 

connected with each other through a physical switch with 

1Gbps capacity. Similarly, 3 VMs, i.e., VM 2-4, in PM A 

are running different number of iperf flows using TCP to 

emulate different levels of traffic loads. The other VM, i.e., 

VM 1 in PM A, generates memcached requests using 

memaslap load generator from libmemcached v1.0.18 [9] 

using TCP. The GET and SET requests ratio of memcached 

requests is 9:1 and the concurrent number of requests is 32. 

The underlying transport protocol is TCP CUBIC by default 

in the following experiments unless specified. 

B. Througput-delay Tradeoff  

We evaluated the throughput-delay tradeoffs for various 

approaches including DCTCP, CoDel, FQ_CoDel and 

CERA by starting 8 iperf TCP flows from VM 2-4 and 32 

memcached requests from VM 1 simultaneously. We also 

use the default TCP variant, TCP CUBIC, in current Linux 

platform as the underlying transport protocol and default TC 

module pfifo_fast, i.e., FIFO in Fig. 4, in our testbed 

experiments. We also started the memcached requests only 

to derive the optimal delays achievable as ground truth, i.e., 

memcached_only in Fig. 2. We tested two versions of 

CERA with the target queue length set to 25 and 60, i.e., 

CERA_25 and CERA_60, respectively.  

As shown in Fig. 4 that plots the cumulative 

distributions of the queueing delay experienced by both 

iperf and memcached packets at QDisc achieved by the 

above approaches, CERA with the target queue length set to 

25 achieves the minimal average queueing delay, 1.38 ms, 

which reduces the average queueing delay by a factor of 

0.53 and 8.4 compared to DCTCP and TCP CUBIC, while 

always outperforms DCTCP in total throughput 

performance regardless of the number of iperf flows. CERA 

with the target queue length set to 60 also outperform 

DCTCP and TCP CUBIC in average queueing delay by a 

factor of 0.35 and 7.3, increasing the average queueing 

delay by only 12%, i.e., 1.57 versus 1.38 ms, compared to 

CERA with the target queue length set to 25, but achieves 

near-100% bandwidth utilization regardless the number of 

iperf flows, e.g., near full bandwidth utilization for 1 iperf 

flow, outperforming DCTCP by 40% as shown in Fig. 5, 

while CERA with the target queue length set to 25 achieves 

75% bandwidth utilization when the number of iperf flows 

is set to 1. To achieve near-100% bandwidth efficiency for 

any number of iperf flows we set 60 for the target queue 

length by default, which can be tuned for a different traffic 

distribution thus we will evaluate the sensitivity of the target 

queue length over different traffic distributions in one of our 

future works. The other approaches also achieve the near 

full bandwidth utilization but result in an even larger 

average queueing delay.  

 

 



 
Fig. 4. The cumulative distributions of queuing delays achieved by 

different approaches.  

 

 
Fig. 5. Total throughput comparison between DCTCP and CERA with two 

target queue lengths. 

V. RELATED WORKS 

There are numerous recent works [3, 4, 5, 6, 11, 12, 13, 

14] on improving in-network delay in datacenter networks, 

which can be classified into three categories: End-to-End 

approaches (E2E), active queue managements (AQM) and 

centralized approaches. In this section we literally introduce 

those works and compare them to CERA. 

E2Es such as DCTCP [4] generally employ a novel rate 

control at end-hosts. TIMELY [12] revisits RTT to detect 

the network congestion for datacenter networks. Specifically, 

TIMELY leverages NIC hardware to make RTT 

measurements with microsecond accuracy thus adjusts 

transmission rates with RTT gradients to keep packet 

latency low while delivering high bandwidth utilization. 

TIMELY achieves more accuracy of in-network RTT by 

only considering RTT between any two NICs, while CERA 

improves delay from VMs to NIC. D2TCP [13] adds 

deadline-awareness on the top of DCTCP, thus adjusts 

CWnds based on both ECN and deadline information to 

meet deadlines, thus they also suffer from the problems in 

DCTCP if it is used in VMs.  

AQMs such as CoDel [6] and ECN [14] that drops or 

marks queueing packets with congestion indicators such as 

the queue length and delay, and endpoints might also need 

to be modified to react to this signals to adjust their 

transmission rates. 
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VI. CONCLUSION AND FUTURE WORKS 

This paper first reveals that VMs in a PM competing for 

bandwidth resources introduce a local delay as high as 13 

ms which results from the packet queueing at QDisc layer of 

that PM, and addresses this problem by proposing CERA 

that adjusts the transmission rate of every VM/flow by using 

a centralized approach. Extensive testbed experiments 

showed that CERA achieves the best the throughput-delay 

tradeoff compared to other existing approaches. In the future 

we plan to evaluate CERA over various traffic distributions, 

e.g., web search, data mining, etc., and further improve 

CERA implementations, e.g., multi-level weight 

assignments, and test it in a real datacenter network.  
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