
Intra-host Rate Control with Centralized Approach
1Zhuang Wang, 1Ke Liu, 1Yifan Shen, 2Jack Y. B. Lee, 1Mingyu Chen, 1Lixin Zhang

1State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences
2Department of Information Engineering, The Chinese University of Hong Kong

{wangzhuang, liuke, shenyifan, cmy, zhanglixin}@ict.ac.cn

yblee@ie.cuhk.edu.hk

Abstract— Today’s datacenter is shared among various

applications with different QoS requirements, which poses a

great challenge to deliver low delay transport with high

throughput. Most of works address this challenge by reducing

the in-network delay, but assumes a negligible local delay.

However, we show that this assumption does not hold for a

multi-tenant datacenter that a physical machine is shared by

multiple tenants with virtual machines running different

applications. As measured, we found that VMs in a PM

competing for bandwidth resources introduce delays as high as

13 ms, resulted from the packet queueing at QDisc layer of that

PM, because current VMs’ rate control still operates in a

distributed manner without exploiting knowledge of the QoS

requirements of applications running in VMs. This work

addresses this problem by proposing a centralized rate

adaptation (CERA) that operates in the host PM, dynamically

schedules the flows from all VMs in a centralized manner. We

implemented a CERA prototype and evaluated CERA through

testbed experiments. Our results show that CERA reduces the

local delay significantly thus reduces the average request

latency of delay sensitive applications, e.g., memcached, by a

factor of 6.3, without sacrificing the throughput performance

of throughput intensive applications, e.g., iperf.

I. INTRODUCTION

Datacenters are shared by various applications with
diverse Quality-of-Service (QoS) requirements: delay
sensitive applications, e.g., memcached [1], require low
delay to minimize their flow completion time (FCT);
throughput intensive applications, e.g., data-parallel
computation like MapReduce [2], require high throughput
for large flows; and others require both high throughput and
low delay, e.g., online data-intensive applications [10]. This
dynamic environment in datacenter poses a great challenge
to deliver low delay transport with high throughput.

Some existing approaches [3-5] address this challenge by
reducing the in-network queueing length, while assuming
negligible local delay at the edge, i.e., physical machines
(PM). However, this assumption is not true for multi-tenant
datacenter that every PM sets up a virtual network attached
by multiple Virtual Machines (VM). Those VMs could run
multiple applications thus could deliver over thousands of
flows with diverse QoS requirements, which could result in a
large backlog at the host PM thus increase the end-to-end
delay. To address this problem one intuitive idea is to apply
the methods proposed to reduce the in-network delay to
reduce the local delay. We employed some conventional
approaches including DCTCP [4], CoDel [6] and Multiple
Level Feedback Queue (MLFQ) in a PM and evaluated them

with testbed experiments. We showed that, compared to the
vanilla PM, they could reduce the local queueing delay by at
most a factor of 4.2 when the number of flows in a VM is
small, i.e., 32, but also result in a local queueing delay of at
least 4 ms when the number of flows is over 50. We point
out, the previous approaches are operated in a distributed
manner which controls the transmission rate on a per-flow
basis without exploiting the knowledge of the other flows
from all VMs sharing the same PM, e.g., flows’ transmission
rate, the number of flows, etc.

To this end, we replace the distributed rate control used
in the virtual network of a PM with a centralized rate
adaptation algorithm (CERA) that continuously estimates the
queueing length at QDisc. If the estimated queue length
exceeds a preconfigured target length CERA first reduces the
aggregated sending window of every VM weighted
proportional to the number of bytes it transmitted by every
VM over the past fixed interval – which implicitly estimates
the current transmission rate of every VM. Second, every
VM equally distributes its aggregated window allocated in
the first step among all flows from that VM, both of which
enable CERA to achieve high throughput and low delay.

We implemented a CERA prototype that contains two

components: (1) a Linux kernel module at the QDisc of host

PMs to monitor the queue length and a user-space program

that determines the aggregated sending window of each VM

according to the estimated queueing length; and (2) a Linux

kernel module implemented at every VM kernel to allocate

the sending window of every flow from that VM.

We evaluated CERA on a testbed with a virtualized

network attached by VMs created with KVM [8]. In our

experiments, we find that CERA reduces the average

queueing delay at QDisc by at least a factor of 0.53 when the

number of flows in a VM is small, e.g., 32, and 1.6 when the

number of flows in a VM is large, e.g., 50, thus improves the

average latency.

The remainder of the paper is organized as follows.

Section II introduces the motivations of this work. Section III

presents the CERA’s algorithms. Section IV evaluates

CERA through testbed experiments. Section V reviews the

related works and Section VII concludes this work.

II. MOTIVATIONS

Our studies were motivated by the unexpectedly large
delay observed in the large scale virtual network of a host
PM, thus we report the results of local delay measured from
a virtual network built in a PM of our testbed, and find out
the primary source of that delay.

Fig. 1. Experiments setup for validating local delays.

In this section, we validate the problem that a large delay

could be observed in virtual networks of host PMs. We

conduct experiments over a testbed depicted in Fig. 1,

consisting 3 PMs that are connected by a switch, where PM

A sets up a virtual network attached by multiple VMs that

send packets to PM B via a bridge connecting the physical

NIC with 1Gbps link capacity. Specifically, we create four

VMs in PM A’s virtual network, one of them runs a

memcached [1] using memaslap load generator [9] and

measures its request latencies.

As shown in Fig. 2, the average latency of memcached

requests are below 1ms that is mainly contributed by the

transmission delay. However, the request latencies of

memcached increase up to over 13ms when it concurrently

runs with 8 iperf flows running in the other 3 VMs

respectively. We measure that the average delay at QDisc

queue is around 12ms.

III. CERA ALGORIHTMS

The idea of using the centralized approach in a datacenter

is not new. Ghobadi et al. [11] first proposed a central

controller, OpenTCP, to adjust TCP parameters and variants,

e.g., initial congestion window size and retransmission time

out (RTO) according to the measured network state and

dynamics during that period. Perry et al. [3] proposed

Fastpass that is a central arbiter instructing every host PM to

control its every packet transmission timing explicitly over a

set of timeslots to achieve the goals of both network-wide

high bandwidth efficiency and near-zero queueing delay.

However, the delay of the control loop, i.e., between the

controller/arbiter and PMs, impacts the accuracy of the rate

controls and the control packets also compete with normal

traffics for bandwidth.

We seek a feasible solution that exploits the knowledge

of flows from all VMs sharing the same PM and

dynamically controls their transmission rates in a centralized

manner. Similar to Fastpass [3] and OpenTCP [11], CERA

algorithms are divided into two components: (1) the central

controller running in the host PM. If the estimated queue

length exceeds a preconfigured target length, it determines

the aggregated sending window of each VM weighted

proportional to the number of bytes it transmitted by that

VM over the past fixed interval – which implicitly estimates

the current transmission rate of every VM; and (2) CERA

client running in every VM distributes the window

reduction among all flows from that VM according to their

current sending windows.

Fig. 2. The cumulative distribution of memcached requests latencies.

A. Central Controller

The central controller continuously monitors the queue

length at QDisc of the host PM by implementing a loadable

kernel module. Specifically, we divide time into small fixed

epoch of ∆ milliseconds in duration. The central controller

monitors the queue length at the end of each epoch. In the

meantime, the central controller intercepts every outgoing

packet just before they are passed to the NIC thus

determines the number of packets transmitted by every VM

enqueued at QDisc during the past M∆ milliseconds – where

M controls the duration of the estimation interval, by

looking into the source IP address of packets’ IP headers.

Let qi denote the queue length at the end of the ith epoch;

nk,i denote the number of packets transmitted by the kth VM

during the past M∆ milliseconds at the end of the ith epoch,

thus nk, i implicitly estimates the sending rate of the kth VM

at the end of ith epoch, i.e., nk,i/M∆. If qi>Tu, where Tu

denotes the upper bound of the target queue length, the

central controller reduces the aggregated sending window of

every VM weighted proportional to the sending rate of that

VM so that the queue length will oscillate between Tu and Tl,

where Tl denotes the lower bound of the target queue length

and Tl<T. Let d denote the RTT and Wi the current total

aggregated sending window allocated for all VMs during

the ith epoch. To reduce the queue length to Tl we have

 / +i lW dC S T (1)

where S denotes the packet size and C denotes the capacity

of the NIC.

Let
ik denote the set of VMs that transmits nonzero

packets during the past M∆ at the end of the ith epoch; μk

denote the weight for VM k; wk,i denote the aggregated

sending window allocated for VM k at the ith
 epoch, thus we

have

,

,

,

k k i

k i i

k k i

k k

n
w W

n

 (2)

If μk=1 for all k, (2) becomes the ECN-based rate control

such as DCTCP. After deriving wk, the central controller

sends wk to VM k, for
ik k , using TCP connection that is

established when VM k is created.

Fig. 3. Network testbed setup.

B. CERA Client

Once a VM, e.g., VM k, is created, CERA client

establishes a TCP connection with the central controller thus

can receive the aggregated window from the controller, i.e.,

wk,i. In the meantime, VM k keeps track of all the active

TCP flows. Specifically, when a TCP flow is established, it

is added to a circular list, and is deleted from the list if that

TCP flow is closed. Because the receiving window (AWnd)

cannot become the throughput bottleneck by default until

loss events are detected, we only modify the CWnd that

mainly affects the sending window.

Let cwm,k,i denote the CWnd of the mth TCP flow of the

kth VM at the end of the ith epoch after the window

distributions; M denote the set of the active TCP flow, the

algorithm to distribute the aggregated sending window

among all the active TCP flows is summarized into the

following two ways:

(i) CERA client equally allocates CWnds among TCP

flows in M , thus we have,

, , , /m k i k icw w M

 (3)

But (3) will result in the remaining windows as cwm,k,i takes

the floor of , /k iw M , thus the remaining windows is

 , , ,k i m k iw cw M (4)

(ii) In order to efficiently make full use of the remaining

windows CERA client allocates (4) one by one to those TCP

flows in a round-robin manner. It is unfair to allocate (4)

always from the head of the circular list, because the flows

in the tail of the list do not have equal chance to obtain the

remaining windows, hence we record the position of the last

updated TCP flow in the circular list during the last epoch,

and allocate (4) from the next one of that recorded position

until (4) becomes zero.

 After step (i) and step (ii), every TCP’s CWnd will be

governed by its TCP variant employed, e.g., TCP CUBIC,

until the next end of epoch.

IV. PERFORAMCNE EVALUATIONS

A. Network Testbed Setup

We evaluate CERA over a testbed consisting of three

Intel Xeon-based physical machines. As shown in Fig. 3,

every PM adopts Linux kernel 3.10.25. PM A setups 4 VMs

using KVM. Every VM also adopts Linux Kernel 3.10.25,

which can access the networks to which a physical NIC is

connected via a bridge. The queue length at QDisc of the

bridge is set to 1000 packets by default. Three PMs are

connected with each other through a physical switch with

1Gbps capacity. Similarly, 3 VMs, i.e., VM 2-4, in PM A

are running different number of iperf flows using TCP to

emulate different levels of traffic loads. The other VM, i.e.,

VM 1 in PM A, generates memcached requests using

memaslap load generator from libmemcached v1.0.18 [9]

using TCP. The GET and SET requests ratio of memcached

requests is 9:1 and the concurrent number of requests is 32.

The underlying transport protocol is TCP CUBIC by default

in the following experiments unless specified.

B. Througput-delay Tradeoff

We evaluated the throughput-delay tradeoffs for various

approaches including DCTCP, CoDel, FQ_CoDel and

CERA by starting 8 iperf TCP flows from VM 2-4 and 32

memcached requests from VM 1 simultaneously. We also

use the default TCP variant, TCP CUBIC, in current Linux

platform as the underlying transport protocol and default TC

module pfifo_fast, i.e., FIFO in Fig. 4, in our testbed

experiments. We also started the memcached requests only

to derive the optimal delays achievable as ground truth, i.e.,

memcached_only in Fig. 2. We tested two versions of

CERA with the target queue length set to 25 and 60, i.e.,

CERA_25 and CERA_60, respectively.

As shown in Fig. 4 that plots the cumulative

distributions of the queueing delay experienced by both

iperf and memcached packets at QDisc achieved by the

above approaches, CERA with the target queue length set to

25 achieves the minimal average queueing delay, 1.38 ms,

which reduces the average queueing delay by a factor of

0.53 and 8.4 compared to DCTCP and TCP CUBIC, while

always outperforms DCTCP in total throughput

performance regardless of the number of iperf flows. CERA

with the target queue length set to 60 also outperform

DCTCP and TCP CUBIC in average queueing delay by a

factor of 0.35 and 7.3, increasing the average queueing

delay by only 12%, i.e., 1.57 versus 1.38 ms, compared to

CERA with the target queue length set to 25, but achieves

near-100% bandwidth utilization regardless the number of

iperf flows, e.g., near full bandwidth utilization for 1 iperf

flow, outperforming DCTCP by 40% as shown in Fig. 5,

while CERA with the target queue length set to 25 achieves

75% bandwidth utilization when the number of iperf flows

is set to 1. To achieve near-100% bandwidth efficiency for

any number of iperf flows we set 60 for the target queue

length by default, which can be tuned for a different traffic

distribution thus we will evaluate the sensitivity of the target

queue length over different traffic distributions in one of our

future works. The other approaches also achieve the near

full bandwidth utilization but result in an even larger

average queueing delay.

Fig. 4. The cumulative distributions of queuing delays achieved by

different approaches.

Fig. 5. Total throughput comparison between DCTCP and CERA with two

target queue lengths.

V. RELATED WORKS

There are numerous recent works [3, 4, 5, 6, 11, 12, 13,

14] on improving in-network delay in datacenter networks,

which can be classified into three categories: End-to-End

approaches (E2E), active queue managements (AQM) and

centralized approaches. In this section we literally introduce

those works and compare them to CERA.

E2Es such as DCTCP [4] generally employ a novel rate

control at end-hosts. TIMELY [12] revisits RTT to detect

the network congestion for datacenter networks. Specifically,

TIMELY leverages NIC hardware to make RTT

measurements with microsecond accuracy thus adjusts

transmission rates with RTT gradients to keep packet

latency low while delivering high bandwidth utilization.

TIMELY achieves more accuracy of in-network RTT by

only considering RTT between any two NICs, while CERA

improves delay from VMs to NIC. D2TCP [13] adds

deadline-awareness on the top of DCTCP, thus adjusts

CWnds based on both ECN and deadline information to

meet deadlines, thus they also suffer from the problems in

DCTCP if it is used in VMs.

AQMs such as CoDel [6] and ECN [14] that drops or

marks queueing packets with congestion indicators such as

the queue length and delay, and endpoints might also need

to be modified to react to this signals to adjust their

transmission rates.

ACKNOWLEDGMENT

We are thankful to all anonymous reviewers for their

helpful feedback. The research was supported in part by the

National Natural Science Foundation of China (NSFC)

under Grant No. 61331008, 61502459, 61221062 and

61521092, the Strategic Priority Research Program of the

Chinese Academy of Sciences under Grant No.

XDA06010401.

VI. CONCLUSION AND FUTURE WORKS

This paper first reveals that VMs in a PM competing for

bandwidth resources introduce a local delay as high as 13

ms which results from the packet queueing at QDisc layer of

that PM, and addresses this problem by proposing CERA

that adjusts the transmission rate of every VM/flow by using

a centralized approach. Extensive testbed experiments

showed that CERA achieves the best the throughput-delay

tradeoff compared to other existing approaches. In the future

we plan to evaluate CERA over various traffic distributions,

e.g., web search, data mining, etc., and further improve

CERA implementations, e.g., multi-level weight

assignments, and test it in a real datacenter network.

REFERENCES

[1] N. Rajesh, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C. Li, R.
McElroy, M. Paleczny, D. Peek, P. Saab, D. Stafford, T. Tung and V.

Venkataramani, “Scaling Memcache at Facebook,” in USENIX NSDI,

2013.
[2] J. Dean and S. Ghemawat. “MapReduce: Simplified Data Processing

on Large Clusters,” in USENIX OSDI, 2004.

[3] P. Jonathan, A. Ousterhout, H. Balakrishnan, D. Shah and H. Fugal,
“Fastpass: A Centralized Zero-queue Datacenter Network,” in ACM

SIGCOMM, 2015.

[4] A. Mohammad, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B.
Prabhakar, S. Sengupta and M. Sridharan, “Data Center TCP

(DCTCP),” in ACM SIGCOMM, 2011.

[5] A. Mohammad, A. Kabbani, T. Edsall, B. Prabhakar, A. Vahdat, M.
Yasuda, “Less is More: Trading a little Bandwidth for Ultra-low

Latency in the Data Center,” in USENIX NSDI, 2012.

[6] N. Kathleen and V. Jacobson. “Controlling Queue Delay,” in ACM
Queue, 2012.

[7] Microsoft SQL Server, Available: http://www.microsoft.com/en-

us/server-cloud/products/sql-server/.
[8] KVM, Available: http://linux-kvm.org.

[9] Libmemcached, Available: http://libmemcached.org/.

[10] FQ_Codel, available: https://tools.ietf.org/html/draft-hoeiland-
joergensen-aqm-fq-codel-01

[11] G. Monia, S. H. Yeganeh and Y. Ganjali. “Rethinking End-to-End

Congestion Control in Software-defined Networks,” in ACM HotNet,
2012.

[12] M. Radhika, T. Lam, N. Dukkipati, E. Blem, H. Wassel, M.

Ghobadi, A. Vahdat, Y. Wang, D. Wetherall and D. Zats, “TIMELY:
RTT-based Congestion Control for the Datacenter,” in ACM

SIGCOMM, 2015.

[13] V. Balajee, J. Hasan and T. N. Vijaykumar, “Deadline-aware
Datacenter TCP (D2TCP),” in ACM SIGCOMM, 2012.

[14] K. Ramakrishnan, S. Floyd and D. Black, “The Addition of Explicit
Congestion Notification (ECN) to IP,” in RFC 3168, 2011

http://www.microsoft.com/en-us/server-cloud/products/sql-server/
http://www.microsoft.com/en-us/server-cloud/products/sql-server/
http://linux-kvm.org/
http://libmemcached.org/
https://tools.ietf.org/html/draft-hoeiland-joergensen-aqm-fq-codel-01
https://tools.ietf.org/html/draft-hoeiland-joergensen-aqm-fq-codel-01

